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Abstract

An edge double Roman dominating function (EDRDF) on a graph G is a function f : E(G)→ {0, 1, 2, 3} satisfying the condition
that such that every edge e with f(e) = 0, is adjacent to at least two edge e, e ′ for which f(e) = f(e ′) = 2 or one edge e ′′ with
f(e ′′) = 3, and if f(e) = 1, then edge e must have at least one neighbor e ′ with f(e ′) > 2. The Edge double Roman dominating
number of G, denoted by γ ′dR(G), is the minimum weight w(f) =

∑
e∈E(G) f(e) of an edge double Roman dominating function

f of G. In this paper, we introduction some results on the edge double Roman domination number of a graph. Also, we provide
some upper and lower bounds for the edge double Roman domination number of graphs.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V | of G
is denoted by n = n(G). For every vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V(G) :
uv ∈ E(G)} and the closed neighborhood of v is the set N[v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is
degG(v) = |N(v)|. A graph G is k-regular if d(v) = k for each vertex v of G. A leaf is a vertex of degree 1,
a support vertex is a vertex adjacent to a leaf, and a strong support vertex is a support vertex adjacent to at
least two leaves. An edge incident to a leaf is called a pendant edge. A tree is an acyclic connected graph.
A tree T is a double star if it contains exactly two vertices that are not leaves. For a,b > 2, a double star
whose support vertices have degree a and b is denoted by S(a,b). If T is a rooted tree, we for each vertex
v, we denote by Tv the sub-rooted tree rooted at v. The height of a rooted is the maximum distance from
the root to a leaf.

The complement of a graph G is denote by G. We write Kn for the complete graph of order n, Cn

for the cycle of length n, and Pn for the path of order n. A matching is any independent set of edges.
A maximal matching is a matching X so that V(X) − V(G) is an independent set of vertices. A perfect
matching in graph G is a matching so that V(X) = V(G). The line graph of a graph G, written L(G), is the
graph whose vertices are the edges of G, with ee ′ ∈ E(L(G)) when e = uv and e ′ = vw in G. It is easy to
see that L(K1,n) = Kn,L(Cn) = Cn and L(Pn) = Pn−1. For a subset S of vertices of G, and a vertex x ∈ S,
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we may that a vertex y /∈ S is a private neighbor of x with respect to S if N(y)∩ S = {x}.
A double Roman dominating function on a graph G is defined by Beeler, Haynes and Hedetniemi in [7] as a
function f : V −→ {0, 1, 2, 3} having the property that if f(u) = 0, then vertex u has at least two neighbors
assigned 2 under f or one neighbor w with f(w) = 3, and if f(u) = 1, then vertex u must have at least one
neighbor w with f(w) > 2. The weight, ω(f), of f is defined as f(V(G)).

A Edge double Roman dominating function(EDRDF) of graph G is a function f : E(G) −→ {0, 1, 2, 3} hav-
ing the property that if f(e) = 0, then edge e has at least two neighbors assigned 2 under f or one
neighbor e ′ with f(e ′) = 3, and if f(e) = 1, then edge e must have at least one neighbor e ′ with f(e ′) > 2.
The weight of an edge double Roman dominating number of f, denote by ω(f), is the value

∑
e∈E(G) f(e).

The weight of a EDRDF,
∑

e∈E(G) f(e). The minimum weight of a EDRDF is the edge double roman
domination number of G, denoted by γ ′dR(G). If f is a EDRDF in a graph G, then we simply can represent
f by f = (E0,E1,E2,E3)(or f = (Ef0,Ef1,Ef2,Ef3) to refer to f), where E0 = {e ∈ E(G) : f(e) = 0},E1 = {e ∈
E(G) : f(e) = 1},E2 = {e ∈ E(G) : f(e) = 2}, and E3 = {e ∈ E(G) : f(e) = 3}.
In this note we initiate the study of the Edge double Roman domination in graphs and present some
(sharp) bounds for this parameter. In addition, we determine the Edge double Roman domination num-
ber of some classes of graphs.

2. Trees

Theorem 2.1. If T is a tree with order n > 2, then γ ′dR(T) 6 n.

Proof. Let T be a tree with order n > 2, we will proceed by induction on n. If n = 2, then theorem is
obvious. If diam(T) = 2 or 3, then T has a dominating edge, and γ ′dR(G) = 3 6 n. Hence, we may assume
that the diameter of T is at least 4. This implies that n > 5.
Assume that any tree T ′ with order n ′ has γ ′dR(T) 6 n

′. Among all longest paths in T . Chose P to be one
that maximizes the degree of its next-to-last vertex v. Let u be the parent of v, that is, u is the non-leaf
neighbor of v, and let w be a leaf neighbor of v. Note that by our choice of v, every child of v is a leaf. We
consider three cases.
Case 1. degT (v) > 2. Then v has a least two leaf children. Consider T ′ = T − Tv. Define f on E(G)
by letting f(vw) = 3 and 0 for each neighbor edges of v except vw. Then f is an edge double Roman
dominating function of T , implying that γ ′dR(T) 6 w(f) = w(f

′) 6 γ ′dR(T
′) 6 n ′ = (n− 1) < n.

Case 2.degT (v) = degT (u) = 2, obtain T ′ by deleting u, v and w. Let z be other neighbor of u. Define f
on E(G) by letting f(x) = f ′(x), except for f(zu) = f(vw) = 0 and f(uv) = 3. Again f is an EDRDF for T
and that γ ′dR(T) 6 w(f) = w(f

′) + 3 6 γ ′dR(T
′) + 3 6 n ′ + 3 = (n− 3) + 3 = n.

Case 3. degT (u) > 2 and let k be the number of children of u, other v, with degree 2 and s be the
number of leaf children of u in T ′. T ′ = T − Tu. Define f on V(T) by f(x) = f ′(x), except for f(uv) = 3
and f(x) = 2 for each non-neighbor edges x of uv outside T” except vw. Again f is an EDRDF we have
γ ′dR(T) 6 w(f) = w(f

′)+ 2k+ 1 6 γ ′dR(T
′)+ 2k+ 1 6 n ′+ 2k+ 1 = (n−(2k+ s+ 1))+ 2k+ 1 = n− s 6 n.

Theorem 2.2. For a tree T of order n, γ ′dR(T) > n− `(T) + 1

Proof. Let T be a tree with order n > 2, we will proceed by induction on n. If n = 2or diam(T) = 2 or 3,
theorem is obvious. Hence, we may assume that the diameter of T is at least 4. This implies that n > 5.
Assume that any tree T ′ with order n ′ has γ ′dR(T) 6 n

′. Among all longest paths in T . Chose P to be one
that maximizes the degree of its next-to-last vertex v. Let u be the parent of v, that is, u is the non-leaf
neighbor of v, and let w be a leaf neighbor of v. Note that by our choice of v, every child of v is a leaf. We
consider two cases.
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Case 1. degT (v) > 2. Consider T ′ = T −w. T ′ is an induced subgraph of T and induction hypothesis,
n− `(T) + 1 = n− 1 − `(T ′) + 1 6 γ ′dR(T

′) 6 γ ′dR(T).
Case 2. degT (v) = 2,degT (u) > 2 and let k be the number of children of u, other v, with degree 2 and s be
the number of leaf children of u in T ′. T ′ = T − Tu. Define f on V(T) by f(x) = f ′(x), except for f(uv) = 3
and f(x) = 2 for each non-neighbor edges x of uv outside T” except vw. Again f is an EDRDF we have
w(f) = 2k+ 1+w(f ′) > 2k+ 1+(n−k− s− `(T ′)+ 1) > 2k+ 1+(n− 2k− s− 1−(`(T)−k− s+ 1)+ 1) >
n− `(T) + k > n− `(T) + 1.

3. edge double Roman domination number of planar graphs

A graph is Outerplanar if it can be embedded in the plane such that every vertex is incident to the
infinite face.

Lemma 3.1. [16] Every simple outerplanar graph has a vertex of degree at most 2.

N1

N2

N3

Figure 1: h

Theorem 3.2. If G is an outerplanar graph of order n, then

γ ′dR(G) 6 b
6n
5 c,

and this bound is sharp for such graphs C3,C7,C5,N1,N2,N3.

Proof. We prove the assertion by induction on n. If n = 1 or 2, then theorem is obvious. So assume that
n > 3 and diam(G) > 3. By lemma3.1, δ(G) 6 2. Let v ∈ V(G) has minimum degree. There are two cases.
Case 1. δ(G) = 1.
Let v a vertex of degree 1 and vw ∈ E(G). Since diam(G) > 3, we can assume that the vertex w has
another neighbor u. Let G ′ = G\{v,w,u}. By induction hypothesis G ′ has a γ ′dR-function, say g ′, whose
weight is at most b6(n−3)

5 c. Define g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = wu
0 otherwise

The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
6(n−3)

5 c+ 3 < b6n
5 c.

Case 2. δ(G) = 2.
Let v a vertex of degree 2 in G and NG(v) = {u,u ′}.If uu ′ ∈ E(G), then let G ′ = G\{v,u,u ′}. By induction
hypothesis G ′ has a γ ′dR-function, say g ′, whose weight is at most b6(n−3)

5 c. Define g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = uu ′

0 otherwise

The function g is an EDRDF. Therefore, we find that
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γ ′dR(G) 6 b
6(n−3)

5 c+ 3 < b6n
5 c.

Thus assume that uu ′ /∈ E(G) and the vertex u has a neighbor w different from u,u ′. If u ′ has a neighbor
w ′ different from u, v,w, then let G ′ = G\{v,u,u ′,w,w ′}. By induction hypothesis G ′ has a γ ′dR-function,
say g ′, whose weight is at most b6(n−5)

5 c. Define g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = uw,u ′w ′

0 otherwise

The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
6(n−5)

5 c+ 6 = b6n
5 c.

If the vertex u ′ has not a neighbor different from v,w, then since δ(G) = 2, d(u ′) = 2 and we have
u ′w ∈ E(G). Similar before, let G ′ = G\{v,u,u ′,w}. By induction hypothesis G ′ has a γ ′dR-function, say
g ′, whose weight is at most b6(n−3)

5 c. Define g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = uw
2 if e = vu ′

0 otherwise

The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
6(n−4)

5 c+ 5 < b6n
5 c.

The proof is complete.

Lemma 3.3. If G is a planar graph of girth at least 6, then δ(G) 6 2.

Proof. Suppose that G has order n and size e and f is the number its faces. Assume that δ(G) > 3. So
e > 3

2n. on the otherhand, since g(G) > 6, 6f 6 2e. By using Euler Formula for planar graphs we have

n = 2 + e− f

> 2 + e− e
3

> 2 + 2e
3

> 2 +n.

a contradiction.

We have the some theorem for planar graphs with girth at least 6.

Theorem 3.4. If G is a planar graph of order n with girth at least 6, then γ ′dR(G) 6 b
6n
5 c.

The graph G is called claw-free if G has not K1,3 as an induced subgraph.

Lemma 3.5. [16] If G is a planar graph, then δ(G) 6 5.

Theorem 3.6. If G is a planar claw-free graph of order, then

γ ′dR(G) 6 b
5n
4 c,

and this bound is sharp for the graph S.
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Figure 2: graph S

Proof. We follow the idea of the proof of theorem 3.2 and prove the assertion by induction on n. The
assertion is true when n = 1 or 2 or diam(G) = 2 or 3. Let v be a vertex of G with minimum degree. By
lemma 3.5, δ(G) 6 5 and we have the following five cases.
Case 1. δ(G) = 1.
Let G ′ and g ′ be that one introduce in Case 1 of the proof of theorem 3.2. By induction hypothesist we
have

γ ′dR(G) 6 b
5(n−3)

4 c+ 3 < b5n
4 c.

Case 2. δ(G) = 2.
Consider the notations of Case 2 of the proof of theorem 3.2. If uu ′ ∈ E(G), then

γ ′dR(G) 6 b
5(n−3)

4 c+ 3 < b5n
4 c.

Assume that uu ′ /∈ E(G) and the vertex u has a neighbor w different from v,u ′. If u ′ has a neighbor w ′

different from v,u,w, then

γ ′dR(G) 6 b
5(n−5)

4 c+ 6 < b5n
4 c.

If the vertex u ′ has not a neighbor different than v,w, then

γ ′dR(G) 6 b
5(n−4)

4 c+ 3 < b5n
4 c.

Case 3.δ(G) = 3.
Let N(v) = {u1,u2,u3}. Since G is claw-free, we can assume that u1u2 ∈ E(G). Since δ(G) = 3 and
diam(G) > 3, we can assume that there exists w ∈ N(u3)\{v,u1,u2}. Let G ′ = G\{v,u1,u2,u3,w}. By
induction hypothesis G ′ has a γ ′dR-function, say g ′, whose weight is at most b5(n−5)

4 c. Define g : E(G)→
{0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = u1u2,u3w

0 otherwise

The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
5(n−5)

4 c+ 6 < b5n
4 c.

Case 4. δ(G) = 4.
Let N(v) = {u1,u2,u3,u4}. Since G is claw-free, we can assume that u1u2 ∈ E(G). If u3u4 ∈ E(G), then let
G ′ = G\{v,u1,u2,u3,u4}. By induction hypothesis G ′ has a γ ′dR-function, say g ′, whose weight is at most
b5(n−5)

4 c. Define g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = u1u2, e = u3u4
0 otherwise
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The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
6(n−5)

5 c+ 6 < b5n
4 c.

So assume that u3u4 /∈ E(G). Since δ(G) = 4, u3 and u4 have neighbors w and w ′ different from u1,u2, v,
respectively if w 6= w ′, then let G ′ = G\{v,u1,u2,u3,u4,w,w ′} and g ′ be an EDRDF for G ′. Define
g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = u1u2, e = u3w,u4w

′

0 otherwise

The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
5(n−7)

4 c+ 9 < b5n
4 c.

Otherwise, N(u3) = N(u4) = {v,u1,u2,w} and this contradicts. The fact that G is planar and has no
subdivision of K5 as a subgraph.
Case 5. δ(G) = 5.
Let N(v) = {u1,u2,u3,u4,u5}. Since G is claw-free, we can assume that u1u2,u3u4 ∈ E(G).
If w ∈ N(u5)\{v,u1,u2,u3,u4}, then let G ′ = G\{v,u1,u2,u3,u4,u5,w} and g ′ be an EDRDF for G ′. Define
g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = u1u2, e = u3u4, e = u5w

0 otherwise

The function g is an EDRDF. Therefore, we find that

γ ′dR(G) 6 b
5(n−7)

4 c+ 9 < b5n
4 c.

Otherwise, N(u5) = {v,u1,u2,u3,u4}. By switching rolls of u3 and u5 we can assume that N(u3) =
{v,u1,u2,u4,u5} and this contradicts. The fact that G is planar and has no subdivision of K5 as a subgraph.

The graph G is called triangle-free, if G is not K3 as an induced subgraph.

Lemma 3.7. If G is planar triangle-free graph, then δ(G) 6 3.

Proof. Suppose that G has order n and size e and f is the number its faces. Assume that δ(G) > 4. So
e > 2n. on the otherhand, since g(G) > 4, 4f 6 2e. By using Euler Formula for planar graphs we have

n = 2 + e− f

> 2 + e− e
2

> 2 + e
2

> 2 +n.

a contradiction.

Theorem 3.8. If G is a planar triangle-free graph of order n, Then

γ ′dR(G) 6 b
6n
5 c.

Proof. We follow the idea of the proof of theorem 3.2 and prove the assertion by induction on n. The
assertion is true when n = 1 or 2 or diam(G) = 2 or 3. Let v be a vertex of G with minimum degree. By
lemma 3.7, δ(G) 6 3 and we have the following five cases.
Case 1. δ(G) 6 2.
Similar case 1 and 2 of the proof of theorem 3.2. By induction hypothesist we have
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γ ′dR(G) < b
6n
5 c.

Case 2.δ(G) = 3.
Let N(v) = {u1,u2,u3}. Since G is triangle-free and δ(G) = 3, we can assume that u1u2 and u3 has distinct
neighbors w,w ′ and w ′′ in V(G)\{v,u1,u2,u3}, respectively. Let G ′ = G\{v,u1,u2,u3,w,w ′,w ′′} and G ′be
an EDRDF for G ′. Define g : E(G)→ {0, 1, 2, 3}

g(e) =


g ′(e) if e ∈ E(G ′)
3 if e = u1w, e = u2w

′, e = u3w
′′

0 otherwise

The function g is an EDRDF and so by induction hypothesis

γ ′dR(G) 6 b
6(n−7)

5 c+ 9 < b6n
5 c.
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